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Background

• Fuel pool fire
– Two dimensional fire 

– Class B fire

• Class B aqueous foams
– Film forming foams

– Non-film forming foams 

• Current product environmentally unfriendly

• New product development
– Understanding of old product required



Background

• Purpose of the film/foam

– Suppress fuel evaporation

– Suppression not constant over time

• Current suppression theories

– Fuel vapors dissolve and diffuse

• Rate governed by

– Fuel emulsifies
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Background

• Purpose of project

– Consider only fuel vapors in 

film/foam layer and air

– Model past experiments 

of Leonard and Williams

– Assume dissolving and diffusing transport

– Match numerical results to experimental data by 

changing

– Categorize transport mechanisms by analyzing      

and resulting concentrations
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Experiment to be Modeled

Fuel Pool

Aqueous 

Film or 

Foam Layer 

Height = 20cm

Radius = 2.5cm

Domain 1

Domain 2



Experiment to be Modeled

• Modeling effort involved solving for

– Axial and Radial velocities in Domain 1

– Concentration of fuel vapors in Domain 1 & 2

• Deliverables

– Software package that

• models experiments of Leonard and Williams by assuming 

the dissolve and diffusive mechanism

• is capable of finding         for a film or foam

• input data
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Governing Equations
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Transformed Governing Equations
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Solution Algorithms

• Upwind differencing

• Successive over relaxation
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Simplified Domain B.C.
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Validation and Testing

• Simplified domain
– Species fraction solver

• Pure advection

• Pure diffusion

– Comparison of species fraction and vorticity 
solvers

– Comparison of stream function solver to Matlab’s 
finite element solver 
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Validation and Testing

• Experimental Domain

– Specified flux at fuel pool surface

• Implies specified amount of fuel evaporation

• Test if at steady state same evaporation at outlet is 

achieved

– Compared to experimental data

• Uncovered n-heptane pool

• Specified nitrogen flow rate

• Matched data within experimental uncertainty 

region  



Validation and Testing

• Secant Method for finding 
– Compare uncovered and covered pool ratios 

between experimental and numerical results

– Removes some experimental uncertainty

• Initial guesses
– Chapman-Enskog Kinetic Theory (foam)

– Wilke-Chang eq. for Liquid-Liquid Diffusion (film)
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Validation and Testing

• Secant Method for finding 

– Test Case: 3cm high foam layer with specified 

nitrogen flow

• Uncovered steady state total flow known

• Set                                     to find steady state total flow for 

covered case

• Removed known           value and set            as the ratio as

the above total flow values

• Asked code to find          that results in

• Found correct value of 
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1201.0 −= scmD
F
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1201.0 −= scmD
F

F
D

expR

F
D



Boundary Conditions

No flux BC
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Air Domain:

Henry’s Law: Vapor 

pressure of a gas is 

proportional to the amount 

of gas dissolved in the 
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Film Domain:
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Results: Case 1

• n-octane pool covered by 1cm of film

– At 100s, concentration measured to be 0.15% of 

uncovered value

– Flow rate of nitrogen was 630 cc per min

– Mole fraction used for the bottom boundary condition 

is 0.018

–

– 1231036.1 −−⋅= scmD
F

1206.0 −= scmD
A







Results: Case 2 (Leonard’s Data)

• n-octane pool covered by                cm of film

– At 1500s, concentration was measured to be 15% of 

uncovered value

– Flow rate of nitrogen was 630 cc per min

– Mole fraction resulting from solubility of n-octane in 

water is 

–

–

7103 −⋅
1206.0 −= scmD

A

31035.2 −⋅

125101 −−⋅= scmD
F



Results: Case 2 (Leonard’s Data)



Results: Case 2 (Leonard’s Data)



Results: Case 2 (Leonard’s Data)
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Conclusions

• Model correctly predicts uncovered case

• Current theories

– Dissolve and diffuse

– Emulsification

• Model suggest dissolving and diffusing is 

insufficient

– High solubility necessary 

• Possible time dependence of 

– Solubility of fuel in the film layer

– Diffusion coefficient



Conclusions

• Delivered software package capable of

– modeling experiments of Leonard and Williams

– is capable of optimizing over 

– input data

• Future Work

– Find solubility and           necessary to replicate 

Leonard’s film data

• Solubility experiments

• Rerun foam layer experiments
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